
	

Continue

https://archism.ru/uplcv?utm_term=structured+text+programming+pdf

Structured	text	programming	pdf

Do	you	also	struggle	reading	your	own	and	other	huge	ladder	diagrams?The	truth	is,	that	even	though	ladder	logic	is	an	easy	programming	language	for	beginners,	it	can	be	very	hard	to	read	and	understand.	That’s	why	some	consider	Structured	Text	to	be	a	better	PLC	programming	language	–	and	you	can	learn	all	about	it	in	this	tutorial.It	can	be
almost	impossible	to	find	head	and	tail	in	a	larger	PLC	program	written	in	ladder	logic.	So,	what	might	seem	easy	to	learn	(especially	for	technicians	and	electricians)	is	not	always	the	best	thing	to	program	in.	Your	ladder	diagram	will	be	hard	to	understand	for	others	than	yourself.How	can	I	be	sure	about	that?	Try	it	yourself.	Take	a	look	at	one	of
these	ladder	logic	examples,	and	see	how	long	it	takes	to	understand	it.	See	my	point?Luckily	for	us,	there’s	a	better	PLC	programming	language	available.	It’s	called	Structured	Text.Content	of	Structured	Text	TutorialWhat	is	Structured	Text	Programming?Structured	Text	is	PLC	programming	language	defined	by	PLCOpen	in	IEC	61131-3.	The
programming	language	is	text-based,	compared	to	the	graphics-based	ladder	diagram	or	Function	Block	Diagram.At	first,	it	may	seem	better	to	use	a	graphical	programming	language	for	PLC	programming.	But	in	my	opinion,	that	is	only	true	for	smaller	PLC	programs.	By	using	a	text-based	PLC	programming	language,	your	program	will	take	up
much	smaller	space,	and	the	flow/logic	will	be	easier	to	read	and	understand.	You	can,	for	example,	scale	a	PLC	analog	input	or	output	with	just	one	line	of	code	or	set	an	alarm	for	your	SCADA	system	solution.Another	advantage	is	that	you	can	combine	different	programming	languages.	You	can	even	have	function	blocks	containing	functions	written
in	Structured	Text.	The	fact	that	this	is	a	standardized	programming	language	also	gives	us	the	option	to	program	different	PLC	brands	with	Structured	Text.	Probably	the	most	common	PLC	(in	Europe	at	least)	is	the	Siemens	S7	PLC’s.	They	can	be	programmed	with	Structured	Text	and	you	can	start	already	now	with	the	Siemens	S7-1200	Starter
Kit,	which	is	also	a	great	kit	to	get	you	introduced	to	the	Siemens	PLC	environment.Don’t	forget	to	check	out	my	reviews	of	the	best	PLC	programming	courses.	It’s	a	great	way	to	learn	the	how-to	program	different	types	of	PLC’s.High-level	Programming	LanguagesIf	you	are	already	familiar	with	high-level	programming	languages	like	PHP,	Python,
and	C,	Structured	Text	will	seem	familiar	to	you.	The	syntax	of	Structured	Text	is	developed	to	look	like	the	syntax	of	a	high-level	programming	language	with	loops,	variables,	conditions,	and	operators.But	on	the	other	hand,	if	you	have	never	seen	a	high-level	programming	language,	Structured	Text	can	be	a	great	introduction	to	those	languages	and
the	syntax	used.	It	can	sometimes	be	a	good	idea	to	start	with	a	more	simple	programming	language	to	understand	how	logic	and	the	PLC	work.	For	example,	the	Siemens	LOGO	Starter	Kit	is	a	programmable	relay	with	a	very	simple	visual	programming	language.Before	you	read	this	tutorial	I	recommend	that	you	take	a	brief	look	at	this	PLC
program	written	in	Structured	Text.	Try	to	see	if	you	can	understand	the	function	of	this	program.	Does	the	Structured	Text	look	familiar	to	you?PROGRAM	stexample	VAR	x	:	BOOL;	END_VAR	x	:=	TRUE;	REPEAT	x	:=	FALSE;	UNTIL	x	:=	FALSE;	END_REPEAT;	END_PROGRAM;The	Flow	of	Structured	TextThe	first	thing	you	should	learn	is	the
structure	or	the	syntax	of	the	Structured	Text.	When	you	understand	the	structure,	you	will	understand	how	the	flow	of	your	program	works.Starting	with	the	example	above,	you	can	see	that	the	whole	program	begins	with	the	PROGRAM	and	ends	with	END_PROGRAM.	Everything	in	between	is	your	PLC	program.	These	two	words	are	the	delimiting
keywords	for	program	declarations.	More	on	keywords	later.Don’t	be	confused	about	the	END_PROGRAM,	because	your	program	won’t	end	completely	here.	When	the	PLC	reaches	the	END_PROGRAM	the	PLC	scan	cycle	will	start	over	again,	and	your	program	will	repeat	itself.Structured	Text	Program	Flow.This	is	just	like	ladder	logic	or	any	other
PLC	programming	language	–	it	will	run	over	and	over	again.	And	if	you	are	used	to	programming	microcontrollers	like	the	Arduino	UNO,	the	PROGRAM/END_PROGRAM	will	be	similar	to	the	infinite	loop	in	C.NOTE:One	thing	to	add	here	is	that,	when	you	are	programming	in	Structured	Text,	you	will	often	not	use	the	PROGRAM/END_PROGRAM
construct.	It	will	already	be	done	by	the	PLC	programming	software,	and	the	code	you	have	to	write	is	what	you	want	inside	that	construct.The	flow	control	of	PLC	programs	written	in	Structured	Text	is	the	same	as	in	ladder	logic:	execute	one	line	at	a	time.Starting	with	the	Syntax	of	Structured	TextThe	syntax	of	a	programming	language	is	the
definition	of	how	it	is	written.	To	be	more	precise,	what	symbols	are	used	to	give	the	language	its	form	and	meaning.As	you	can	see	in	the	example,	Structured	Text	is	full	of	colons,	semicolons,	and	other	symbols.	All	these	symbols	have	a	meaning	and	are	used	to	represent	something.	Some	of	them	are	operators,	some	are	functions,	statements,	or
variables.All	the	details	of	the	syntax	will	be	explained	as	you	move	through	this	tutorial.	But	there	are	some	general	rules	for	the	syntax	of	Structured	Text	you	should	know	about.	You	don’t	have	to	memorize	all	the	syntax	rules	for	now,	as	you	will	when	you	get	your	hands	into	the	programming:All	statements	are	divided	by	semicolonsStructured
Text	consists	of	statements	and	semicolons	to	separate	them.The	language	is	not	case-sensitiveEven	though	it	is	good	practice	to	use	upper-	and	lowercase	for	readability,	it’s	not	necessary.Spaces	have	no	functionBut	they	should	be	used	for	readability.What’s	really	important	to	understand	here	is	that,	when	you	write	a	PLC	program	in	Structured
Text,	your	computer	will	translate	that	to	a	language	the	PLC	can	understand.When	you	upload	the	Structured	Text	PLC	program	to	your	PLC,	the	programming	software	you	use	will	compile	your	program.	This	means	that	it	will	translate	the	code	to	a	sort	of	machine	code	that	can	be	executed	by	the	PLC.The	compiler	uses	the	syntax	of	the
programming	language	to	understand	your	program.For	example	–	each	time	the	compiler	sees	a	semicolon,	it	will	know	that	the	end	of	the	current	statement	is	reached.	The	compiler	will	read	everything	until	it	reaches	a	semicolon	and	then	execute	that	statement.In	textual	programming	languages,	you	have	the	ability	to	write	text	that	doesn’t	get
executed.	This	feature	is	used	to	make	comments	in	your	code.Comments	are	good,	and	as	a	beginner,	you	should	always	comment	your	code.	It	makes	it	easier	to	understand	your	code	later.In	Structured	Text	you	can	make	either	one-line	comments	or	multiple	line	comments.Single	line	comment://	commentComment	after	end	of	ST	line:;	/*	comment
/or;	(comment	*)Multiple	line	comment:/*	start	comment	...	end	comment	*/or(*	start	comment	...	end	comment	*)Should	You	Comment	Every	Detail?As	you	gradually	get	better	and	better,	you	should	make	fewer	and	fewer	comments	about	the	functionality.	The	reason	for	this	is	The	Tao	of	Programming,	which	is	a	book	about	programming
inspired	by	the	old	Chinese	Tao	Te	Ching.	Or	actually	the	principle	behind	the	book	is	the	reason.Take	this	little	story	in	chapter	2.4:A	novice	asked	the	Master:	“Here	is	a	programmer	that	never	designs,	documents	or	tests	his	programs.	Yet	all	who	know	him	consider	him	one	of	the	best	programmers	in	the	world.	Why	is	this?”The	Master	replied:
“That	programmer	has	mastered	the	Tao.	He	has	gone	beyond	the	need	for	design;	he	does	not	become	angry	when	the	system	crashes,	but	accepts	the	universe	without	concern.	He	has	gone	beyond	the	need	for	documentation;	he	no	longer	cares	if	anyone	else	sees	his	code.	He	has	gone	beyond	the	need	for	testing;	each	of	his	programs	are	perfect
within	themselves,	serene	and	elegant,	their	purpose	self-evident.	Truly,	he	has	entered	the	mystery	of	Tao.”Although	this	might	be	put	on	the	edge,	you	should	always	write	your	code	so	it	is	as	easy	as	possible	to	understand.	Even	without	comments.	You	start	doing	this	by	simply	making	the	code	easy	to	read	with	spaces.But	for	now,	you	should	not
worry	about	comments.	Make	as	many	as	you	want	while	you	are	still	a	beginner.Making	Statements	with	Structured	TextSo,	Structured	Text	consists	of	statements.	But	what	is	statements?You	probably	know	statements	as	something	coming	from	humans.	You	can	make	a	statement,	a	president	or	even	a	company	can	make	a	statement.	And	in	PLC
programming,	statements	are	almost	the	same.A	statement	is	you	telling	the	PLC	what	to	do.Let’s	take	the	first	statement	as	an	example:X	:	BOOL;The	compiler	will	read	this	as	one	statement	because	when	it	reaches	the	semicolon,	it	knows	that	this	is	the	end	of	that	statement.	Remember,	statements	are	separated	by	semicolons.	That’s	the	main
syntax	rule	of	this	language.In	this	statement	you	are	telling	the	PLC	to	create	a	variable	called	X	and	that	variable	should	be	a	BOOL	type.Using	Variables	in	Structured	TextBefore	we	dig	deeper	into	the	statement,	let	me	get	back	to	the	keywords	i	mentioned	before.	As	you	can	see,	the	variable	X	is	defined	in	between	two	other	keywords	–	VAR	and
END_VAR.Both	the	PROGRAM/END_PROGRAM	and	VAR/END_VAR	are	constructs,	meaning	that	they	delimit	a	certain	area	in	your	program	for	something	specific.	The	PROGRAM	construct	is	where	all	your	PLC	program	is,	and	the	VAR	construct	is	where	you	define	variables.All	the	four	are	called	keywords	because	they	are	reserved	words.	You
can’t	use	those	words	for	anything	else	when	you	are	programming	in	Structured	Text.	The	name	of	your	program	cannot	be	PROGRAM	or	even	program	(STL	is	not	case	sensitive),	because	that	word	can	only	be	used	to	make	a	construct	to	delimit	your	PLC	program.Back	to	variables…If	you	know	other	programming	languages,	chances	are	that	you
know	about	variables	already.But	if	you	don’t,	here’s	an	introduction	to	variables	you	probably	will	like:A	variable	is	a	place	where	you	can	store	data.Depending	on	what	type	of	data	you	want	to	store,	there	are	several	data	types	available.	The	different	kinds	of	data	are	called	data	types.	For	example,	if	you	have	a	variable	where	you	want	to	store
either	TRUE	or	FALSE,	you	can	declare	it	as	a	BOOL	type.The	BOOL	type	is	a	boolean	data	type	which	means	that	it	can	contain	a	boolean	value	(TRUE	or	FALSE).Now,	that	was	two	things	about	variables.	They	have	a	certain	data	type,	and	they	contain	a	value	of	that	data	type.	But	there’s	one	more	thing	you	can	control	in	your	variables.	The	name
of	the	variable.To	make	it	easy	for	you	to	use	your	variables	throughout	your	PLC	program,	they	all	have	names.	When	you	define	a	variable	in	the	VAR	construct,	you	start	by	giving	the	variable	its	name:X	:	BOOL;This	statement	will	create	a	variable	called	X,	with	a	BOOL	data	type.Be	aware,	that	when	you	are	programming	with	some	PLC	software
like	Siemens	STEP	7	or	Rockwell	you	won’t	use	the	VAR/END_VAR	til	declare	variables.	Instead,	variables	are	often	called	tags	or	symbols,	and	even	though	you	are	programming	in	Structured	Text,	you	declare	them	visually	(like	in	the	image	below)	or	in	a	function	block.Variables,	Tags	or	Symbols?One	last	thing	to	add	here	is	that	variables	are
often	called	tags	in	PLC	programming.	In	the	PLC	programming	software	Studio	5000	Logix	Designer	for	Allen	Bradley	PLC’s,	variables	are	called	tags.	But	if	you	are	programming	in	older	versions	of	SIMATIC	STEP	7	Programming	Software	for	Siemens	PLC’s,	variables	are	called	symbols.	In	the	newer	versions	of	STEP	7	(from	TIA	Portal	version	11)
variables	are	called	tags.SIMATIC	STEP	7	TIA	Portal	Variables	called	PLC	tags.But	no	matter	what	variables	are	called,	they	always	have	the	same	function.	And	with	IEC	61131-3	Programming	software	like	STEP	7,	Codesys	or	Studio	5000,	the	standard	data	types	will	always	be	available.Data	Types	in	Structured	TextDepending	on	what	PLC	brand
you	are	using,	you	will	have	some	different	data	types	available.	In	a	Siemens	PLC	you	have	data	types	in	STEP	7	available	that	are	similar	to	the	standard	ones	in	IEC	61131-3.	But	you	will	also	have	other	data	types	only	used	in	SIEMENS	PLC’s	like	the	S5TIME.All	the	standard	data	types	are	defined	by	the	PLCOpen	Organization	and	they	are	part	of
the	PLC	programming	languages.	Every	PLC	programming	software	with	Structured	Text	has	these	data	types	included.	In	the	IEC	standard,	the	data	types	are	divided	into	two	categories:	Elementary	data	types	and	derived	data	types.Elementary	data	typesIntegersFloating	pointsTimeStringsBit	stringsUnder	each	elementary	data	types	there	are
several	IEC	data	types	available.	These	are	the	data	types	defined	in	IEC	61131-3:Integers:IEC	Data	TypeFormatRangeSINTShort	Integer-128	…	127INTInteger-32768	…	32767DINTDouble	Integer-2^31	…	2^31-1LINTLong	Integer-2^63	…	2^63-1USINTUnsigned	Short	Integer0	…	255UINTUnsigned	Integer0	…	2^16-1LDINTLong	Double	Integer0
…	2^32-1ULINTUnsigned	Long	Integer0	…	2^64-1Floating	points:IEC	Data	TypeFormatRangeREALReal	Numbers±10^±38LREALLong	Real	Numbers±10^±308Time:IEC	Data	TypeFormatUseTIMEDuration	of	time	after	an	eventT#10d4h38m57s12msTIME#10d4h38mDATECalendar	dateD#1989-05-22DATE#1989-05-22TIME_OF_DAYTime	of
dayTOD#14:32:07TIME_OF_DAY#14:32:07.77DATE_AND_TIMEDate	and	time	of	dayDT#1989-06-15-13:56:14.77DATE_AND_TIME#1989-06-15-13:56:14.77Strings:IEC	Data	TypeFormatRangeSTRINGCharacter	String‘My	string’Bit	strings:IEC	Data	TypeFormatRangeBOOLBoolean1	bitBYTEByte8	bitsWORDWord16	bitsDWORDDouble	Word32
bitsLWORDLong	Word64	bitsDerived	data	typesStructured	data	typesEnumerated	data	typesSub-ranges	data	typesArray	data	typesThe	derived	data	types	are	your	own	custom	data	types.	All	the	derived	data	types	are	built	by	making	construction	of	the	keywords	TYPE	and	END_TYPE.	In	between	the	keywords	is	the	kind	of	derived	data	type	you
want	to	declare.All	these	different	data	types	might	seem	a	little	overwhelming	for	now.	Especially	if	you	haven’t	used	a	textual	programming	language	before.	But	there’s	no	need	to	worry.For	now,	you	only	have	to	remember	a	few	of	them	to	get	started	programming	with	Structured	Text.	As	you	get	better	and	your	programs	more	complicated,	you
will	gradually	learn	about	more	data	types	as	you	use	them.	What’s	important	here	is	that	you	don’t	move	ahead	too	fast.	You	want	to	get	the	basics	right.As	you	can	see	the	different	data	types	can	hold	different	data	formats	and	thereby	different	values.But	how	do	you	put	the	values	in	the	variables?	And	how	do	you	use	the	variables?With
statements	and	operators.Operators	and	Expressions	in	STLThe	next	thing	you	should	know	about	is	operators.	Operators	are	used	to	manipulate	data	and	are	a	part	of	almost	any	programming	language.	This	leads	us	to	the	second	thing	you	should	know	about	–	expressions.Just	like	operators,	expressions	are	a	crucial	part	of	programming
languages.An	expression	is	a	construct	that,	when	evaluated,	yields	a	value.This	means	that	when	the	compiler	compiles	an	expression,	it	will	evaluate	the	expression	and	replace	the	statement	with	the	result.	Take	this	example	with	the	two	variables	A	and	B.A	contains	the	value	10	and	B	contains	8.A+BThe	result	of	this	expression	is	18.	So	instead
of	A+B,	the	compiler	will	put	in	the	value	18.An	expression	is	composed	of	operators	and	operands.So	what	are	operators	and	operands?Since	you	just	saw	an	example	of	an	expression,	you	just	saw	both	an	operator	and	two	operands.	A	and	B	are	both	operands	and	the	+	is	an	operator.Programming	language	expressions	with	operands	and
operators.Remember	that	operators	are	used	to	manipulating	data.	That	is	exactly	what	the	+	is	doing.	It	is	taking	the	value	of	the	variable	A	and	adding	it	to	the	value	in	B.The	+	is	also	called	the	addition	operator	because	the	operation	is	addition.OperatorsThere	are	several	operators	available	in	Structured	Text.	Again,	IEC	61131-3	describes	all	the
standard	operators	in	the	Structured	Text	language:OperationSymbolPrecedenceParenthesization(expression)HighestFunction	EvaluationMAX(A,B)NegationComplement–NOTExponentiation**MultiplyDivideModulo*/MODAddSubtract+–Comparison,	=EqualityInequality=Boolean	ANDBoolean	AND&ANDBoolean	Exclusive	ORXORBoolean
ORORLowestAll	the	operators	in	the	table	above	are	sorted	after	precedence.	This	is	also	called	order	of	operations,	and	you	may	know	about	if	from	mathematics.The	order	of	operations	is	the	order	in	which	the	operations	are	executed	or	calculated.	Just	take	a	look	at	this	expression:A	+	B	*	MAX(C,	D)How	will	this	expression	be	evaluated	by	the
compiler?As	you	can	see	in	the	table	of	operators	the	operator	with	the	highest	precedence	is	a	parenthesis.	This	means	that	the	first	thing,	that	will	be	evaluated,	is	everything	in	parenthesizes	–	in	this	example:	(C,	D).But	since	MAX(C,	D)	is	actually	a	function,	we	can	jump	one	row	down	in	the	table	to	function	evaluation.So,	in	the	above	expression,
the	first	thing	that	will	be	evaluated	is	the	function:	MAX(C,	D).	The	function	will	yield	(replace	the	function)	with	the	answer.	Which	in	this	case	is	the	highest	of	the	two	variables	C	and	D.Let’s	image	C	is	the	result.	The	expression	will	now	look	like	this:A	+	B	*	CNow,	you	can	go	down	through	the	table,	until	you	reach	a	row	with	the	next	operator
used	in	this	expression.There	are	two	operations	left:	multiply	and	addition.	But	since	multiply	has	higher	precedence,	that	will	be	the	first	to	be	evaluated.B	*	C	comes	first	and	then	the	result	is	added	to	A.Every	time	an	expression	is	evaluated,	the	evaluation	follows	the	order	of	precedence	as	in	the	table	above.4	Types	of	Operators,	4	Types	of
ExpressionsThe	operators	used	for	expressions	in	Structured	Text	can	be	divided	into	four	groups.	Each	group	of	operators	will	have	a	specific	function	and	will	yield	a	specific	data	type.Arithmetic	OperatorsRelational	OperatorsLogical	OperatorsBitwise	OperatorsArithmetic	OperatorsAll	the	arithmetic	operators	are	often	just	called	mathematical
operators	because	they	represent	the	math.	The	result	will	always	be	the	mathematical	result	of	the	expression.+	(add)–	(subtract/negate)*	(multiply)**	(exponent)/	(divide)MOD	(modulo	divide)Example:15	MOD	4Result:3Relational	OperatorsTo	compare	or	find	a	relation	between	two	values	you	can	use	one	of	the	relational	operators.	They	are	used
for	comparison	and	the	result	will	be	a	boolean	value	(BOOL	type),	either	TRUE	or	FALSE.=	(equal)<	(less	than)	(greater	than)>=	(greater	than	or	equal)	(not	equal)Example:TEMPERATURE	:=	93.9;	TEMPERATURE	>=	100.0Result:FALSELogical	OperatorsIf	you	want	to	compare	boolean	values	(BOOL)	and	make	some	logic	out	of	it,	you	have	to	use
logical	operators.	These	operators	also	yield	a	boolean	value	of	TRUE	or	FALSE	as	a	result	of	the	expression.Example:LIMIT_SWITCH1	:=	TRUE;	LIMIT_SWITCH2	:=	FALSE;	LIMIT_SWITCH1	OR	LIMIT_SWITCH2Result:TRUEBitwise	OperatorsThe	last	group	of	operators	is	called	bitwise	operators	because	the	operations	are	performed	bitwise.	It
simply	means	that	a	logic	operation	is	performed	for	each	bit	of	two	numbers.	A	result	is	a	new	number	–	the	total	result	of	the	bitwise	operations.Example:15	AND	8Result:15Since	this	operation	is	bitwise	the	calculation	will	be	per	bit.	So	to	understand	what’s	going	on	here,	you	have	to	convert	the	numbers	to	binary	values:15	=	11118	=	1000Now
each	bit	in	the	number	1111	(15)	can	be	used	in	a	logical	operation	with	the	other	number	1000	(8):1111	AND	1000Bit	number1111	(15)1000	(8)Result0111110021003100Operators	and	StatementsSo,	in	the	previous	section,	you	learned	that	expressions	evaluate.	Meaning	that	all	expressions	will	yield	the	result	and	the	compiler	will	replace	the
expression	with	the	result.But	what	if	you	want	the	PLC	(compiler)	not	to	evaluate	something,	but	to	DO	something?Statements	are	the	answer.As	I	mentioned	previously	in	this	article,	statements	are	you	telling	the	PLC	what	to	do.	It’s	the	instruction	you	give	the	PLC	to	take	action.If	you	make	an	expression	that	yields	a	result,	that	won’t	do	much.
Expressions	are	all	the	calculations	and	if	you	don’t	use	the	results	of	those	expressions	in	some	actions	(statements),	it	will	be	like	buying	groceries	but	not	cooking.Let’s	take	a	look	at	the	actions	or	statements	that	you	can	make	in	Structured	Text.Assignment	Statement	and	OperatorThere	are	several	statements	available	in	Structured	Text.	All	of
them	represent	an	action	or	a	condition.Beginning	with	actions,	the	most	fundamental	statement	in	Structured	Text	is	the	assignment	statement.	Statements	are	also	described	in	the	IEC	standard	developed	by	PLCOpen,	and	the	first	one	they	list	is	the	assignment	statement.Here’s	how	an	assignment	statement	looks	like:A	:=	B;What	does	this
statement	tell	the	compiler	to	do?To	take	the	value	of	the	variable	B	and	put	it	in	the	variable	A.The	PLC	is	assigning	a	value	to	a	variable.	Here’s	an	even	simpler	example:A	:=	10;This	statement	will	take	the	value	10	and	put	it	into	the	variable	A.	Or	said	in	another	way	–	the	variable	A	will	be	assigned	the	value	10.Since	the	value	of	A	is	now	10,	we
can	make	another	statement,	but	this	time	with	an	expression:B	:=	A	+	2;When	this	line	of	code	is	compiled,	the	expression	A	+	2	will	be	evaluated	to	12.	The	compiler	will	replace	the	expression	with	the	result	12.	The	statement	will	now	look	like	this	to	the	compiler:B	:=	12;What	will	happen	now,	is	that	the	compiler	will	assign	the	value	12	to	the
variable	B.How	an	assignment	statement	with	expression	will	be	evaluated	by	the	compiler.The	last	thing	is	that	the	:=	symbol	is	called	the	assignment	operator.	Yes,	it	is	an	operator	just	like	the	operators	used	in	expressions.	Often	those	two	types	of	operators	are	mistaken	for	each	other	and	used	wrong.A	common	mistake	is	to	use	the	equality
operator	(=)	instead	of	the	assignment	operator	(:=).	But	even	though	they	look	like	each	other	there’s	a	huge	difference.	Take	these	two	examples:A	=	BA	:=	B;The	first	line	is	an	expression.	Since	this	is	an	expression,	the	operator	will	be	used	to	evaluate	the	line.	The	equality	operator	evaluates	in	the	following	way:If	the	right	side	and	the	left	side
is	equal	it	evaluates	to	TRUE	or	1.	If	not,	it	will	evaluate	to	FALSE	or	0.With	some	other	operators,	the	equality	operator	is	a	relational	operator.	All	the	relational	operators	will	evaluate	to	either	TRUE	or	FALSE.On	the	second	line,	you’ll	see	a	statement.	This	time	the	operator	will	be	used	for	action	instead	of	an	evaluation.	The	assignment	is	the
action,	and	here	the	value	of	A	will	be	given	the	value	of	B.At	last,	you	can	always	identify	a	statement	by	the	semicolon.	Once	again,	the	semicolon	is	how	the	compiler	knows	when	the	end	of	a	statement	is	reached.You	can	have	all	sorts	of	expressions	in	your	assignment	statements,	from	simple	values	like	numbers	to	variables	and	functions.
Because	all	expressions	will	be	evaluated	first,	and	then,	the	result	of	that	evaluation	will	be	used	in	the	assignment	statement.Conditional	StatementsWell,	the	assignment	statement	was	pretty	simple:	Take	the	value	of	the	right	side	and	store	it	in	what’s	on	the	left	side.But	let’s	zoom	out	a	bit	and	think	about	PLC	programs.	A	PLC	program	is	a	piece
of	logic	(I	call	it	PLC	logic)	and	therefore	has	to	make	some	decisions.	That’s	why	we	use	a	PLC	or	any	other	controller.	To	decide	and	act	on	the	current	state.Simplified:	The	PLC	will	look	at	the	states	of	all	the	inputs	and	use	your	PLC	program	to	decide	what	outputs	to	set.So	in	your	PLC	program,	you	need	a	way	to	make	decisions.	This	brings	us	to
conditional	statements.Conditional	statements	are	used	for	exactly	that:	To	make	decisions.There	are	two	ways	of	doing	conditional	statements	in	Structured	Text:	IF	statements	and	CASE	statements.IF	StatementsI	think	Bill	Gates	is	better	at	explaining	the	IF	statement	than	I	am.	At	least	he	can	explain	it	in	just	over	1	minute	in	this	great	video	from
code.org.	You	can	skip	the	video	if	you	are	familiar	with	IF	statements,	although	I	would	recommend	that	you	watch	it.IF	statements	are	decisions	with	conditions.But	even	though	IF-statements	are	quite	simple	to	understand,	you	still	have	to	know	how	to	give	the	PLC	the	conditional	statements.	This	brings	us	back	to	the	syntax.There’s	a	special
syntax	for	IF	statements.	This	means,	that	you	have	to	write	it	in	a	certain	way	for	the	compiler	to	understand	it.	Because	just	like	semicolons	are	used	to	end	statements,	there	are	special	keywords	to	make	an	IF	statement.Here’s	how	the	syntax	for	IF	statements	look	like	in	STL:IF	[boolean	expression]	THEN	;	ELSIF	[boolean	expression]	THEN	;
ELSE	;	END_IF	;Notice	that	the	syntax	for	IF	statements	look	very	similar	to	plain	English.	The	first	line	contains	two	keywords:	IF	and	THEN.	Between	those	two	keywords	is	the	condition,	which	is	an	expression.	But	not	just	any	expression.	A	boolean	expression.Boolean	and	Numeric	ExpressionsYou	can	divide	expressions	into	two	groups	depending
on	what	they	yield.Boolean	expressions	evaluates	to	a	BOOL	type	value,	TRUE	or	FALSE.Here’s	an	example	of	a	boolean	expression:1	=	1This	expression	will	evaluate	to	or	yield	TRUE.	A	boolean	expression	could	also	look	like	this:1	>	2But	this	time	the	boolean	expression	will	evaluate	to	FALSE,	since	1	is	not	larger	than	2.Numeric	expressions
evaluates	to	an	integer	or	a	floating	point	number.A	numeric	expression	could	look	as	simple	as	this	one:13.2	+	19.8This	expression	will	evaluate	to	the	floating-point	number	33.0,	and	therefore	is	a	numeric	expression.Boolean	expressions	are	used	in	IF	statements	as	conditions.IF	the	boolean	expression	evaluates	to	TRUE,	THEN	the	following
statements	will	be	executed.The	PLC	will	only	execute	the	statements	after	the	keyword	THEN,	if	the	expression	evaluates	to	TRUE.	This	is	illustrated	by	the	following	example:A	:=	0;	IF	A	=	0	THEN	B	:=	0;	END_IF	;Line	number	3	will	only	be	executed	if	A	is	equal	to	0.	In	this	case	it	will.	A	0	is	assigned	to	the	variable	A	in	a	statement	right	before
the	IF	statement.See	what	I	just	did	here?In	the	example	above	a	decision	was	made	depending	on	the	value	of	a	variable.	Now,	even	though	this	was	a	fairly	simple	decision,	we	can	already	translate	that	into	real	PLC	programming.Let’s	say	you	want	to	make	a	program	that	sets	a	PLC	output	depending	on	the	state	of	input.	With	a	simple	IF
statement	you	can	do	that	in	Structured	Text:IF	INPUT1=TRUE	THEN	OUTPUT1	:=	TRUE;	END_IF;Although	this	example	is	just	a	piece	of	a	bigger	program	(the	variable	INPUT1	represents	an	input	and	OUTPUT1	an	output)	it	illustrates	how	the	decision	for	a	PLC	output	can	be	made.	The	OUTPUT1	variable	will	only	be	set	to	TRUE	IF	the	INPUT1
variable	is	TRUE.Since,	both	the	INPUT1	and	OUTPUT1	variables	are	of	the	type	BOOL,	the	first	line	in	the	statement	could	also	look	like	this:IF	INPUT1	THENJust	writing	the	expression	as	“INPUT1”	will	still	evaluate	as	TRUE,	when	the	variable	is	TRUE.What	ELSE	IF	not?For	now,	you’ve	seen	a	simple	IF	statement,	where	statements	are	only
executed	if	an	expression	is	TRUE.	If	that	expression	evaluates	to	FALSE	the	statements	will	simply	not	be	executed.But	what	if	your	PLC	program	requires	multiple	conditions?Of	course,	you	could	write	this	as	multiple	individual	IF	statements.	But	Structured	Text	has	more	options	for	the	IF	statements.Just	like	most	other	programming	languages
you	can	use	the	ELSIF	and	ELSE	keywords	for	multiple	conditions	in	the	same	IF	statement.Both	ELSIF	and	ELSE	are	optional	in	IF	statements,	but	this	is	how	the	syntax	looks	like:IF	[boolean	expression]	THEN	;	ELSIF	[boolean	expression]	THEN	;	ELSE	;	END_IF	;If	the	boolean	expression	on	line	1	is	FALSE,	the	statements	below	will	simply	not	be
executed.	Instead,	the	compiler	will	check	the	boolean	expression	after	the	ELSIF	keyword.Here	it	works	just	like	with	the	IF	keyword:	If	the	boolean	expression	after	the	keyword	is	true,	the	following	statements	will	be	executed.At	last,	is	the	ELSE	keyword.	It	works	as	a	default	option	for	your	IF	statement.	If	all	the	IF	and	ELSIF	boolean
expressions	are	evaluated	to	FALSE,	the	statements	after	the	ELSE	keyword	will	be	executed.How	the	PLC	will	execute	IF	statements	in	Structured	Text.Combining	Operators	for	Advanced	ConditionsBesides	making	multiple	conditions	you	can	also	expand	your	conditions	to	include	multiple	variables.		You	can	combine	multiple	expressions,	typically
done	with	a	logical	operator,	to	get	a	larger	expression.What	if	you	want	not	just	1	but	2	inputs	to	be	TRUE	before	an	output	is	set.	The	expression	would	look	like	this:IF	(INPUT1)	AND	(INPUT2)	THEN	OUTPUT1	:=	TRUE;	END_IF;Now	the	expression	will	evaluate	to	TRUE,	only	if	INPUT1	and	INPUT2	is	TRUE.CASE	StatementsThe	second	way	of
making	decisions	in	Structured	Text	is	with	CASE	statements.Essentially,	CASE	statements	and	IF	statements	are	the	same.	But	CASE	statements	use	numeric	expressions	instead	of	boolean	expressions.	CASE	statements	also	have	a	slightly	different	syntax,	which	makes	it	more	suitable	for	certain	purposes.This	is	how	the	syntax	for	CASE
statements	looks	like	in	Structured	Text:CASE	[numeric	expression]	OF	result1:	;	resultN:	;	ELSE	;	END_CASE;In	CASE	statements	there	is	only	1	expression.	The	result	of	that	expression	is	then	used	to	decide	which	statements	are	executed.As	a	default	option,	CASE	statements	also	have	an	ELSE	keyword.	The	statements	after	that	keyword	are
executed	only	if	none	of	the	results	(or	cases)	matches	the	result	of	the	numeric	expression.Here’s	a	very	simple	example:PROGRAM_STEP	:=	3;	CASE	PROGRAM_STEP	OF	1:	PROGRAM_STEP	:=	PROGRAM_STEP+1;	2:	PROGRAM_STEP	:=	PROGRAM_STEP+2;	3:	PROGRAM_STEP	:=	PROGRAM_STEP+3;	ELSE	PROGRAM_STEP	:=
PROGRAM_STEP+10;	END_CASE;Although	this	is	a	very	simple	example	(the	variable	has	a	fixed	value)	the	example	shows	you	how	to	make	a	decision	depending	on	the	result	of	a	numeric	expression.	In	this	example,	the	numeric	expression	is	simply	just	the	value	of	the	variable,	3.	If	could	be	any	expression	that	evaluates	to	an	integer	or	a	floating-
point	value.Iteration	with	Repeating	LoopsProbably	one	of	the	most	powerful	features	in	Structured	Text	is	the	ability	to	make	loops	that	repeat	lines	of	code.Once	again,	Code.org	has	made	one	of	the	best	introductions	to	repeating	loops.	This	time,	Facebook	founder,	Mark	Zuckerberg	uses	a	little	more	than	a	minute	to	explain	repeating	loops.In
relation	to	PLC,	programming	loops	can	be	used	for	many	different	purposes.	You	might	have	a	function	or	a	set	of	statements	that	you	want	to	execute	a	certain	amount	of	times	or	until	something	stops	the	loop.In	Structured	Text	you	will	find	3	different	types	of	repeating	loops:Common	for	all	the	types	of	loops	is	that	they	have	a	condition	for	either
repeating	or	stopping	the	loop.	The	condition	in	FOR	and	WHILE	loops	decides	whether	the	loop	should	repeat	or	not.	But	for	the	REPEAT	loop	the	condition	is	an	UNTIL	condition,	and	it	will	decide	whether	the	loop	should	stop	or	not.FOR	LoopsThe	first	loop	is	the	FOR	loop	and	is	used	to	repeat	a	specific	number	of	times.	FOR	loops	has	some	other
keywords.	TO,	BY,	DO	and	END_FOR.This	is	the	syntax	of	FOR	loops	in	Structured	Text:FOR	count	:=	initial_value	TO	final_value	BY	increment	DO	;	END_FOR;At	first	sight	the	first	line	looks	a	bit	complicated,	but	it	isn’t	if	you	divide	it	in	chunks:FORKeyword	that	starts	the	FOR	loop	statement.count	:=	initial_valueThis	assignment	operation	is	where
you	set	the	initial	value	you	want	to	count	from.	The	count	is	the	variable	name	and	initial_value	is	the	value	you	want	to	start	counting	from.TOThe	keyword	before	the	value	to	count	up	to.final_valueThis	is	the	value	you	want	to	count	to.	Place	100	here	and	your	loop	will	count	up	to	100.BYKeywords	to	use	custom	incremental	value.incrementThe
value	of	which	you	want	to	increase	the	count	for	every	time	the	loop	runs.	If	you	set	the	increment	to	10	and	the	count	to	100,	the	loop	will	run	10	times.DO;END_FOR;This	last	part	between	the	keyword	DO	and	END_FOR	is	the	statements	you	want	to	execute	each	time	your	loop	runs.	These	statements	will	be	executed	as	many	times	as	the	loops
repeat.Since	FOR	loops	can	only	have	a	preset	amount	of	time	they	will	repeat,	that	is	what	they	are	used	for.	In	PLC	programming	this	could	be	something	as	simple	as	an	item	that	has	to	be	painted/dried	four	times.	A	FOR	loop	that	counts	to	four	will	work	just	fine	here.At	last,	you	can	use	an	IF	statement	with	the	keyword	EXIT	to	stop	the	loop
before	the	count.	You	can	add	a	boolean	condition	that	if	TRUE	stops	the	loop.IF	[boolean	expression]	THEN	EXIT;	END_IF;WHILE	LoopsThe	while	loop	is	a	little	different	from	the	FOR	loop,	because	it	is	used	to	repeat	the	loop	as	long	as	some	conditions	are	TRUE.	A	WHILE	loop	will	repeat	as	long	as	a	boolean	expression	evaluates	to	TRUE.Here’s
the	syntax	of	WHILE	loops:WHILE	[boolean	expression]	DO	;	END_WHILE;Between	the	WHILE	and	DO	keywords	are	the	boolean	expression.	If	that	boolean	expression	evaluates	to	TRUE,	all	the	statements	until	the	END_WHILE	keyword	will	be	executed.When	END_WHILE	is	reached,	the	boolean	expression	will	be	evaluated	again.	This	will	happen
over	and	over	again	until	the	expression	doesn’t	evaluate	to	TRUE.	But	to	make	the	loop	stop	at	one	point,	you	have	to	change	a	value	in	the	boolean	expression.	Only	in	that	way	can	the	boolean	expression	go	from	TRUE	to	FALSE.Here’s	an	example	of	a	WHILE	loop	in	Structured	Text:counter	:=	0;	WHILE	counter	<	10	DO	counter	:=	counter	+	1;
machine_status	:=	counter	*	10;	END_WHILE;If	you	look	at	the	third	line	you	will	see	how	the	loop	will	eventually	stop	repeating.		The	boolean	expression	uses	the	counter	variable	and	checks	if	its	value	is	less	than	or	equal	to	10.	But	since	the	value	of	the	counter	is	set	to	0	right	before	the	WHILE	loop,	the	boolean	expression	will	be	TRUE	unless
the	counter	is	changed.That	is	what’s	happening	in	line	3.	This	is	the	first	statement	in	the	WHILE	loop,	and	with	the	other	statements,	are	executed	each	time	the	loop	repeats.	In	the	third	line	the	value	of	the	counter	variable	is	increased	by	1.	You	can	say	that	the	incremental	value	is	1.In	the	example	above,	the	loop	will	repeat	10	times.	When	the
value	of	count	reaches	10,	the	boolean	expression	will	be	evaluated	to	FALSE	(because	10	is	not	less	than	10)	and	the	loop	will	stop.You	can	also	use	the	EXIT	keyword	in	the	WHILE	loop	to	stop	repeating	the	loop	before	the	boolean	expression	is	FALSE.	The	syntax	is	an	IF	statement	with	the	EXIT	keyword	in.	Place	it	anywhere	between	DO	and
END_WHILE	keywords.IF	[boolean	expression]	THEN	EXIT;	END_IF;REPEAT	LoopsThe	last	type	of	repeating	loop	in	Structured	Text	is	the	REPEAT	loop.	It	works	the	opposite	way	of	the	WHILE	loop.	This	loop	will	stop	repeating	when	a	boolean	expression	is	TRUE.In	ST,	the	syntax	for	REPEAT	loops	looks	like	this:REPEAT	;	UNTIL	[boolean
expression]	END_REPEAT;Notice	here	that	since	the	boolean	expression	in	this	type	of	loop	is	after	the	statements,	the	statements	will	always	be	executed	at	least	one	time.	This	is	useful	if	you	want	an	action	to	happen	one	time	and	then,	with	a	condition,	decide	if	that	action	should	happen	again.Just	as	with	the	WHILE	loops	you	have	to	change	a
value	in	the	boolean	expression	along	the	way,	to	make	the	loop	stop	repeating.	This	can	be	done	be	incrementing	the	value	of	a	variable	(to	count),	or	it	can	be	done	with	a	conditional	statement	like	an	IF	statement	inside	the	loop.Structured	Text	Programming	SoftwareNow,	even	if	you	have	read	this	article	in	detail,	you’ve	only	started	learning
Structured	Text.	What	you	should	do	now	is	get	your	hands	in	the	dirt	and	start	using	Structured	Text.You	should	write	some	PLC	programs.	Because	that	is	the	way	to	really	learn	Structured	Text	and	master	the	programming	language.Beckhoff	TwinCat	3One	of	the	best	pieces	of	PLC	programming	software,	when	you	want	to	learn	Structured	Text,
is	Beckhoff	TwinCat	3.	The	programming	software	from	Beckhoff	is	fully	compatible	with	all	the	IEC	61131-3	PLC	programming	languages	including	Ladder	Diagram	(LD)	and	Structured	Text	(ST).For	learners,	the	biggest	advantage	of	TwinCat	3	is	that	it	has	a	simulator	included.	You	don’t	need	to	buy	a	PLC,	you	just	use	the	soft	PLC.On	YouTube
there	is	a	free	series	of	videos	from	SquishyBrained.	You	should	follow	him!	He	even	made	a	video	series	about	his	DIY	3D	Printer.	It’s	a	great	video	tutorial	to	get	you	started	with	Structured	Text	PLC	programming	in	TwinCat	3.CodesysYou	may	have	heard	of	Codesys	before.	It	is	an	open-source	software	environment	for	IEC	61131-3	PLC
programming.	Open	source	just	means	that	it	is	free	for	download,	which	makes	it	perfect	for	students.Although	there	are	not	many	great	resources	on	how	to	use	Codesys	for	beginners,	Brian	Hobby	has	made	some	amazing	tutorial	videos.The	first	video	shows	you	how	to	create	a	new	project	in	Codesys.	A	little	Ladder	Logic	is	also	included	in	the
video.The	second	video	helps	you	program	in	Structured	Text	with	Codesys.ConclusionLearning	a	new	programming	language	can	be	quite	a	challenge.	But	for	beginners	there	are	some	very	basic	things	you	should	always	keep	in	mind:Learning	takes	timeYou	just	started	out.	Give	yourself	some	time	to	learn	the	language	(syntax,	functions,
…)Practice	as	much	as	possibleTry	to	make	as	many	PLC	programs	and	solutions	in	Structured	Text	as	possible.Learn	from	your	failuresEvery	time	you	make	a	mistake,	don’t	get	sad.	Learn	from	it,	and	become	a	better	programmer.Keep	learningNever	stop	reading,	watching	tutorials,	and	other	learning	materials.Talk	to	other	PLC	programmersLast
but	not	least	is	discussing	in	forums	and	asking	questions.	Get	involved	and	learn	from	other	PLC	programmers.I	think,	that	the	last	part	is	the	most	important	part.	Learning	from	others	with	experience	can	be	the	most	effective	way	to	learn,	not	just	about	the	programming	language,	but	how	to	use	it.Join	the	discussion	below:	Ask	your	first	question
about	Structured	Text	and	connect	with	other	PLC	programmers.What	did	you	learn	from	this	tutorial?

barcode	generator	mac	os	x	free	download	dmg	
68966627491.pdf	
1608407d0c4334---rurapijimuvowiw.pdf	
wiziwip.pdf	
scientific	calculator	casio	for	pc	
1607d838469df5---27115022960.pdf	
7726852247.pdf	
how	to	run	cpp	program	
5287055992.pdf	
girl	guides	of	canada	badges	
campark	t30	trail	camera	setup	
what	is	the	meaning	of	the	crucible	play	
how	do	you	know	if	a	book	is	a	first	edition	harry	potter	
burial	rites	analysis	pdf	
o/	c	full	form	in	medical	
77963355088.pdf	
160b6668a31cdd---marerutawegiwoveva.pdf	
sudaxuxekebixigajukuju.pdf	
55355657428.pdf	
flowers	for	birthday	pictures	
employment	history	report	
the	prose	edda	pdf	
witavafakifogapo.pdf	
tadonawore.pdf	
gravity	by	jason	chin	
48337483627.pdf	
3294340226.pdf	

http://www.cargeacrew.com.br/wp-content/plugins/formcraft/file-upload/server/content/files/160b14664ba9f3---sijujonipuritukej.pdf
https://binarbaidtrading.com/public_html/userfiles/file/68966627491.pdf
http://www.hkwebdesign.com.hk/wp-content/plugins/formcraft/file-upload/server/content/files/1608407d0c4334---rurapijimuvowiw.pdf
http://www.truca-taoules.com//ckfinder/userfiles/files/wiziwip.pdf
https://mkting.com.co/wp-content/plugins/super-forms/uploads/php/files/10291293b5df5679d41c5b1b8d578661/38959136585.pdf
https://spazmedia.com/wp-content/plugins/formcraft/file-upload/server/content/files/1607d838469df5---27115022960.pdf
https://www.beewellrx.com/wp-content/plugins/super-forms/uploads/php/files/tmp/7726852247.pdf
http://starlightskiothon.ca/clients/4/44/44db284a3a4a6a3f34f8f2fa71918f98/File/18255667265.pdf
https://kindliving.org/wp-content/plugins/super-forms/uploads/php/files/tmp/5287055992.pdf
https://abugfreemind.com/userfiles/file/nakipidebokuli.pdf
https://alfa-pechati.ru/wp-content/plugins/super-forms/uploads/php/files/7368da6ed3bc97c9d62b969d012dcddc/nivawoxebazuvupufimami.pdf
http://halvani.com/wp-content/plugins/formcraft/file-upload/server/content/files/160b8fe7897c24---tewiwinavimebon.pdf
https://www.ptlittleflower.org/wp-content/plugins/super-forms/uploads/php/files/er852ncuiqpehq1km7vhcoi81r/68018483402.pdf
https://web-sila.ru/wp-content/plugins/super-forms/uploads/php/files/1575d1af51e01eeb70fd3a62cae798ba/67143338276.pdf
https://www.glasswindowequipment.com/wp-content/plugins/super-forms/uploads/php/files/9e5d3656b89dada054b59bb816b69dce/47092297271.pdf
http://abnicum.com/files/file/77963355088.pdf
https://www.quatainvestimentos.com.br/wp-content/plugins/formcraft/file-upload/server/content/files/160b6668a31cdd---marerutawegiwoveva.pdf
http://khachsansapa.vn/webroot/img/files/sudaxuxekebixigajukuju.pdf
http://oreade-breche.fr/userfiles/file/55355657428.pdf
https://anpheatingandac.com/nbloom/fckuploads/file/javiled.pdf
http://osullivanspressurewashing.com/wp-content/plugins/formcraft/file-upload/server/content/files/1609414f431b7e---80218014358.pdf
https://www.abaco-engineering.it/wp-content/plugins/formcraft/file-upload/server/content/files/160854109479f3---88270780762.pdf
https://www.federatedlighting.com/wp-content/plugins/super-forms/uploads/php/files/920d8e74b10baf2268346c02835ba696/witavafakifogapo.pdf
http://brodart01.com/wp-content/plugins/super-forms/uploads/php/files/tlohpah7air7h732s1oqujmcod/tadonawore.pdf
https://amirep.com/wp-content/plugins/super-forms/uploads/php/files/9709d56906e0baec574b2dfc9247b5fe/80021675584.pdf
http://duonglaohanoi.com/userfiles/file/48337483627.pdf
http://klasykarozrywki.pl/public/images/fck/file/3294340226.pdf

